Generating Random Data*

Alan T. Arnholt
Department of Mathematical Sciences
Appalachian State University
arnholt@math.appstate.edu

Spring 2006 R Notes

*Copyright © 2006 Alan T. Arnholt
Generating Random Samples
 Overview of Sampling

Binomial Distribution
 Overview of the Binomial Distribution

The R Script
Using `sample()`

- `sample(x, size, replace = FALSE, prob = NULL)` takes a sample of the specified size from the elements of `x` by sampling either with or without replacement.
Using `sample()`

- `sample(x, size, replace = FALSE, prob = NULL)` takes a sample of the specified size from the elements of `x` by sampling either with or without replacement.
- To sample with replacement, type `replace=TRUE`. To sample without replacement, enter `replace=FALSE`.
Using `sample()`

- `sample(x, size, replace = FALSE, prob = NULL)` takes a sample of the specified size from the elements of `x` by sampling either with or without replacement.
- To sample with replacement, type `replace=TRUE`. To sample without replacement, enter `replace=FALSE`.
- The sampling need not be uniform. Probabilities of selecting the values in `x` can be specified with the argument `prob`.
Simulate 18,000 rolls of a fair die and determine the frequency of occurrence of each possible outcome.

```r
> die <- 1:6
> rolls <- sample(x=die, size=18000, replace=TRUE)
> table(rolls)
rolls
   1  2  3  4  5  6
2969 3063 2994 3042 3021 2911
> round(table(rolls)/length(rolls),3)
rolls
   1  2  3  4  5  6
0.165 0.170 0.166 0.169 0.168 0.162
```
A Bernoulli trial is a random experiment with only two possible outcomes. The outcomes are mutually exclusive and exhaustive. For example, success or failure, true or false, alive or dead, male or female, etc. A Bernoulli random variable X, can take on two values, where $X(\text{success}) = 1$ and $X(\text{failure}) = 0$. The probability that X is a success is π, and the probability that X is a failure is $\rho = 1 - \pi$.
Example 3.15 from BSDA - Suppose a field-goal kicker has an 80% success rate inside the 35 yard line. Simulate eight kicks inside the 35 for ten consecutive seasons.

- To perform the simulation, we will use `sample()`
Generating Bernoulli Trials with `sample()`

Example 3.15 from BSDA - Suppose a field-goal kicker has an 80% success rate inside the 35 yard line. Simulate eight kicks inside the 35 for ten consecutive seasons.

- To perform the simulation, we will use `sample()`
- Eighty Bernoulli trials are generated which can be thought of as ten games with eight field-goal attempts each.
> set.seed(13)
> fg <- sample(x=c(0,1),size=8*10,replace=TRUE, + prob=c(.20,.80))
> fgm <- matrix(fg,nrow=10)
> fgmd <- cbind(fgm,apply(fgm,1,mean)*100)
> fgmd

```
[1,]  1  1  1  1  1  1  1  1  100.0
[2,]  1  0  1  1  1  1  1  1   87.5
[3,]  1  0  1  0  0  1  0  1   50.0
[4,]  1  1  1  0  1  0  1  1   75.0
[5,]  0  1  1  1  1  1  1  1   87.5
[6,]  1  1  1  1  0  1  1  0   75.0
[7,]  1  1  1  1  1  1  1  1  100.0
[8,]  1  1  1  1  1  1  1  1  100.0
[9,]  0  0  1  1  1  1  1  1   75.0
[10,] 1  1  1  1  1  1  1  1  100.0
```
Binomial Distribution

When a sequence of Bernoulli trials conforms to the following list of requirements it is called a **binomial experiment**.

1. The experiment consists of a fixed number \(n \) of Bernoulli trials.
Binomial Distribution

When a sequence of Bernoulli trials conforms to the following list of requirements it is called a **binomial experiment**.

1. The experiment consists of a fixed number \(n \) of Bernoulli trials.

2. The probability of success for each trial, denoted by \(\pi \), is constant from trial to trial. The probability of failure is \(\varrho = (1 - \pi) \).
Binomial Distribution

When a sequence of Bernoulli trials conforms to the following list of requirements it is called a **binomial experiment**.

1. The experiment consists of a fixed number \(n \) of Bernoulli trials.

2. The probability of success for each trial, denoted by \(\pi \), is constant from trial to trial. The probability of failure is \(\rho = (1 - \pi) \).

3. The trials are independent.
Binomial Distribution

When a sequence of Bernoulli trials conforms to the following list of requirements it is called a binomial experiment.

1. The experiment consists of a fixed number \((n)\) of Bernoulli trials.
2. The probability of success for each trial, denoted by \(\pi\), is constant from trial to trial. The probability of failure is \(\rho = (1 - \pi)\).
3. The trials are independent.
4. The random variable of interest, \(X\), is the number of observed successes during the \(n\) trials.
The **Binomial** probability distribution function (pdf) is written

$$
P(X = x | n, \pi) = \frac{n!}{(n-x)!x!} \pi^x (1 - \pi)^{n-x}, \quad x = 0, 1, 2, \ldots, n.
$$

If X has a Binomial distribution with parameters n and π, then the mean and standard deviation of X are

- $\mu_X = E[X] = n\pi$
The **Binomial** probability distribution function (pdf) is written

\[
P(X = x | n, \pi) = \frac{n!}{(n-x)!x!} \pi^x (1 - \pi)^{n-x}, \quad x = 0, 1, 2, \ldots, n.
\]

If \(X \) has a Binomial distribution with parameters \(n \) and \(\pi \), then the mean and standard deviation of \(X \) are

- \(\mu_X = E[X] = n\pi \)
- \(\sigma_X = \sqrt{n\pi(1 - \pi)} \)
The **Binomial** probability distribution function (pdf) is written

\[
P(X = x | n, \pi) = \frac{n!}{(n-x)!x!} \pi^x (1 - \pi)^{n-x}, \quad x = 0, 1, 2, \ldots, n.
\]

If \(X \) has a Binomial distribution with parameters \(n \) and \(\pi \), then the mean and standard deviation of \(X \) are

- \(\mu_X = E[X] = n\pi \)
- \(\sigma_X = \sqrt{n\pi(1 - \pi)} \)
Using `dbinom()`

- `dbinom(x, size, prob)` computes the probability that
 \[P(X = x | n, \pi) \]
 given \(X \sim Bin(n = size, \pi = prob) \).

Using `dbinom()`

- `dbinom(x, size, prob)` computes the probability that $P(X = x | n, \pi)$ given $X \sim Bin(n = size, \pi = prob)$.
- Example: The mortality rate of a certain disease is 34%. Of ten patients who have the disease, what is the probability that more than half will die from the disease?
Using \texttt{dbinom()} \\

- \texttt{dbinom(x, size, prob)} computes the probability that \\
 \(P(X = x|n, \pi) \) given \(X \sim Bin(n = size, \pi = prob) \). \\

- Example: The mortality rate of a certain disease is 34\%. Of ten patients who have the disease, what is the probability that more than half will die from the disease? \\
 - Note: \(X \sim Bin(n = 10, \pi = 0.34) \), and we want to find \\
 \[P(X > 5) = 1 - P(X \leq 5) = P(X = 5) + P(X = 4) + P(X = 3) + P(X = 2) + P(X = 1) + P(X = 0). \]
Doing the Math

\[P(X = 5) = \binom{10}{5} \times 0.34^5 \times (1 - 0.34)^{10-5} \]

\[= \frac{10!}{5! \times (10 - 5)!} \times 0.34^5 \times (1 - 0.34)^{10-5} \]

\[= 0.1433887 \]

\[> \text{choose}(10,5) \times 0.34^5 \times (1 - 0.34)^{(10-5)} \]

\[[1] \ 0.1433887 \]

\[> \text{dbinom}(5,10,0.34) \]

\[[1] \ 0.1433887 \]
Link to the R Script

- Go to my web page *Script for Generating Random Data*
- Homework: problems 3.32 - 3.52
- See me if you need help!