Using R in an Introductory Statistics Course*

Alan T. Arnholt
Department of Mathematical Sciences
Appalachian State University
arnholt@math.appstate.edu

18th Annual International Conference on Technology in Collegiate Mathematics, March, 2006, Orlando, Florida

*Copyright © 2006 Alan T. Arnholt
What is R?
 R U Ready?

Audience and Class
 My Audience

Course Objectives
 Examples

R and Tinn-R
 My History
 R Features
 Tinn-R

Installing R
 Installing R and Using Packages

Resources
 Resources for the introductory course
R U Ready?
• R is a statistical programming language not unlike the non-GUI commands in S-PLUS. R is a derivative of the original S System, an innovative software program that helps users to manage and extract useful information from data.
R U Ready?

- R is a statistical programming language not unlike the non-GUI commands in S-PLUS. R is a derivative of the original S System, an innovative software program that helps users to manage and extract useful information from data.
- John Chambers, the developer of the S System, is now a core member of the R development team.
R U Ready?

- R is a statistical programming language not unlike the non-GUI commands in S-PLUS. R is a derivative of the original S System, an innovative software program that helps users to manage and extract useful information from data.
- John Chambers, the developer of the S System, is now a core member of the R development team.
- In fact, in the February, 2005, issue of the *Journal of Statistical Software*, Jan de Leeuw, said “It is obvious now, and it was obvious then, that S was rapidly becoming the *lingua franca* of statistics.”
Graphical Illustration of Empirical Rule

The area between 85 and 115 is 0.6827

\[X \sim \text{Normal} \left(\mu = 100, \sigma = 15 \right) \]

The area between 70 and 130 is 0.9545

\[X \sim \text{Normal} \left(\mu = 100, \sigma = 15 \right) \]

The area between 55 and 145 is 0.9973

\[X \sim \text{Normal} \left(\mu = 100, \sigma = 15 \right) \]
Confidence Interval Simulation

100 random 95% confidence intervals where \(\mu = 50 \)

Note: 5% of the random confidence intervals do not contain \(\mu = 50 \).
Graphical Representation of Simple Linear Regression

\[E(Y|x_3) = \beta_0 + \beta_1 x_3 \]
\[E(Y|x_2) = \beta_0 + \beta_1 x_2 \]
\[E(Y|x_1) = \beta_0 + \beta_1 x_1 \]
Statistical Problems

Many statistical problems can be broken down into three components:

- Collecting data
Statistical Problems

Many statistical problems can be broken down into three components:

- Collecting data
- Analyzing / summarizing the collected data
Many statistical problems can be broken down into three components:

- Collecting data
- Analyzing / summarizing the collected data
- Interpreting the analyzed data
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.

Personal Position

- If you cannot implement a concept, you do not understand the concept. (Example: Given some data, find the percent of values that fall within plus or minus two standard deviations of the mean.)
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.

Personal Position

- If you cannot implement a concept, you do not understand the concept. (Example: Given some data, find the percent of values that fall within plus or minus two standard deviations of the mean.)
- Computing is integrally related to statistics.
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.

Personal Position

- If you cannot implement a concept, you do not understand the concept. (Example: Given some data, find the percent of values that fall within plus or minus two standard deviations of the mean.)
- Computing is integrally related to statistics.
- Any programming language or software program is simply a tool to implement a concept.
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.

Personal Position

- If you cannot implement a concept, you do not understand the concept. (Example: Given some data, find the percent of values that fall within plus or minus two standard deviations of the mean.)
- Computing is integrally related to statistics.
- Any programming language or software program is simply a tool to implement a concept.
- Working with large data sets by hand is not time effective.
The course I am teaching assumes data is collected correctly. This talk will focus on the analyzing / summarizing of collected data, for which my class uses R.

Personal Position

- If you cannot implement a concept, you do not understand the concept. (Example: Given some data, find the percent of values that fall within plus or minus two standard deviations of the mean.)
- Computing is integrally related to statistics.
- Any programming language or software program is simply a tool to implement a concept.
- Working with large data sets by hand is not time effective.
- Simulations are even more effective when the students can code them versus when the students use the instructor’s code or an applet.
To whom am I teaching?
To whom am I teaching?

- Appalachian State University is a comprehensive state university.
To whom am I teaching?

- Appalachian State University is a comprehensive state university.
- Students come from a variety of majors (50% psychology, 25% biology, and 25% many disciplines).
To whom am I teaching?

- Appalachian State University is a comprehensive state university.
- Students come from a variety of majors (50% psychology, 25% biology, and 25% many disciplines).
- Incoming freshman average 1100 on the SAT.
To whom am I teaching?

- Appalachian State University is a comprehensive state university.
- Students come from a variety of majors (50% psychology, 25% biology, and 25% many disciplines).
- Incoming freshman average 1100 on the SAT.
- The majority of students are sophomores.
How does my class work?
How does my class work?

- Students install R and Tinn-R (a text editor) on machines in class — first class period.
How does my class work?

- Students install R and Tinn-R (a text editor) on machines in class — first class period.
- Students have a pen drive on which they install R and Tinn-R — second class period.
How does my class work?

• Students install R and Tinn-R (a text editor) on machines in class — first class period.
• Students have a pen drive on which they install R and Tinn-R — second class period.
• Students use R!
How does my class work?

- Students install R and Tinn-R (a text editor) on machines in class — first class period.
- Students have a pen drive on which they install R and Tinn-R — second class period.
- Students use R!
- Students use scripts that mirror R on slides — this allows students to take notes (Tinn-R) during class.
How does my class work?

- Students install R and Tinn-R (a text editor) on machines in class — first class period.
- Students have a pen drive on which they install R and Tinn-R — second class period.
- Students use R!
- Students use scripts that mirror R on slides — this allows students to take notes (Tinn-R) during class.
- Students are in front of computers every class.
Topics and course objectives

Students should be able to organize and summarize univariate data.

EXPLORATORY DATA ANALYSIS

- Histogram of cholest
- Density of cholest
- Boxplot of cholest
- Q–Q Plot of cholest
Topics and course objectives

Students should be able to organize and summarize multivariate data.

![Barley Yield Chart]

<table>
<thead>
<tr>
<th>Barley Yield (bushels/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 30 40 50 60</td>
</tr>
</tbody>
</table>

- **Trebi**
 - Wisconsin No. 38
 - No. 457
 - Glabron
 - Peatland
 - Velvet
 - No. 475
 - Manchuria
 - No. 462
 - Svanosta

- **University Farm**
 - Wisconsin No. 38
 - No. 457
 - Glabron
 - Peatland
 - Velvet
 - No. 475
 - Manchuria
 - No. 462
 - Svanosta

- **Morris**

- **Grand Rapids**

- **Duluth**
Topics and course objectives

Students should be able to solve problems involving the binomial and normal distributions.

\[X \sim \text{Bin}(30, 0.7) \]

The area between 87 and 123 is 0.7165

\[X \sim \text{Normal} (\mu = 100, \sigma = 16) \]
Topics and course objectives

Students should understand the ideas behind a sampling distribution.

\[X \sim N(50, 15) \]

\[X \sim U(0, 1) \]

\[X \sim \text{Lnorm}(1, 1) \]
Topics and course objectives

Students should understand the logic behind the creation as well as be able to compute and interpret confidence intervals for unknown parameters.

Note: 5% of the random confidence intervals do not contain $\mu = 50$
Topics and course objectives

Students should understand the logic behind hypothesis testing and be able to implement that logic with practical scenarios.

\[P(\text{Type II error}) = 0.16 \]
\[P(\text{Type I error}) = 0.31 \]

Figure: Graphical representation of type I and type II errors when \(H_0 : \mu = 1 \) versus \(H_1 : \mu = 4 \).
How did I get to R?
How did I get to R?

How did I get to R?

How did I get to R?

- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
How did I get to R?

- Used MinitabTM from 1993-2002.
- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
- Wrote GUI front end for everything students used in course.
How did I get to R?

- Used MinitabTM from 1993-2002.
- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
- Wrote GUI front end for everything students used in course.
 - Student frustration went down.
How did I get to R?

• Used MinitabTM from 1993-2002.
• Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
• Wrote GUI front end for everything students used in course.
 • Student frustration went down.
 • Students learning went down as well.
How did I get to R?

- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
- Wrote GUI front end for everything students used in course.
 - Student frustration went down.
 - Students learning went down as well.
- Fall 2004 started using R in service course.
How did I get to R?

- Used MinitabTM from 1993-2002.
- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
- Wrote GUI front end for everything students used in course.
 - Student frustration went down.
 - Students learning went down as well.
- Fall 2004 started using R in service course.
- Because R is free and so similar in functionality to S-PLUS, I could not justify the cost of renewing the S-PLUS license.
How did I get to R?

- Fall 2002 students used S-PLUS by typing commands (encountered some frustration).
- Wrote GUI front end for everything students used in course.
 - Student frustration went down.
 - Students learning went down as well.
- Fall 2004 started using R in service course.
- Because R is free and so similar in functionality to S-PLUS, I could not justify the cost of renewing the S-PLUS license.
- Wanted to create robust course materials (GUI materials hard to keep current)
What is great about R?
What is great about R?

Advantages of using R include:
What is great about R?

Advantages of using R include:

- It is free.
What is great about R?

Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
What is great about R?

Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
 - Extremely portable
What is great about R?

Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
 - Extremely portable
 - Students use it more.
Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
 - Extremely portable
 - Students use it more.
 - Students don’t have to go to a lab if they have a home computer.
What is great about R?

Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
 - Extremely portable
 - Students use it more.
 - Students don’t have to go to a lab if they have a home computer.
- An incredible amount of documentation
What is great about R?

Advantages of using R include:

- It is free.
- Students have no excuse not to get it.
- Can be installed and run from a pen drive.
 - Extremely portable
 - Students use it more.
 - Students don’t have to go to a lab if they have a home computer.
- An incredible amount of documentation
- Extremely powerful and difficult to misuse
What is great about R? (continued)

- Commands do not change as GUI menus do.
What is great about R? (continued)

- Commands do not change as GUI menus do.
- Simulations are easy.
What is great about R? (continued)

- Commands do not change as GUI menus do.
- Simulations are easy.
- Easily extensible
What is great about R? (continued)

- Commands do not change as GUI menus do.
- Simulations are easy.
- Easily extensible
- Open source
What is great about R? (continued)

- Commands do not change as GUI menus do.
- Simulations are easy.
- Easily extensible
- Open source
- Analyses are reproducible.
What is great about R? (continued)

• Commands do not change as GUI menus do.
• Simulations are easy.
• Easily extensible
• Open source
• Analyses are reproducible.
• Seamless integration into reports/slides using Sweave
What is great about R? (continued)

- Commands do not change as GUI menus do.
- Simulations are easy.
- Easily extensible
- Open source
- Analyses are reproducible.
- Seamless integration into reports/slides using Sweave
- Programming language of choice for research statisticians
Power of a programming language

The cholesterol levels of 62 subjects in the Framingham Heart Study are stored in the variable `cholest` of the data frame `Framingham` found in the BSDA package.
Power of a programming language

The cholesterol levels of 62 subjects in the Framingham Heart Study are stored in the variable `cholest` of the data frame `Framingham` found in the BSDA package.

- What percent of the actual data falls within one standard deviation of the mean?
The cholesterol levels of 62 subjects in the Framingham Heart Study are stored in the variable `cholest` of the data frame `Framingham` found in the BSDA package.

- What percent of the actual data falls within one standard deviation of the mean?
- What percent of the actual data falls within two standard deviations of the mean?
The cholesterol levels of 62 subjects in the Framingham Heart Study are stored in the variable `cholest` of the data frame `Framingham` found in the `BSDA` package.

- What percent of the actual data falls within one standard deviation of the mean?
- What percent of the actual data falls within two standard deviations of the mean?
- Create a histogram of the cholesterol values and depict the range of values for the mean \pm two standard deviations with a double arrow.
```
library(BSDA)
attach(Framingham)
str(Framingham)
Altblue <- "#C0C0C0"
mx <- mean(cholest)
sx <- sd(cholest)
c(mx, sx)
c(mx-sx, mx+sx)
c(mx-2*sx, mx+2*sx)
(sum(cholest>(mx-1*sx)&cholest<(mx+1*sx))/length(cholest))*100
(sum(cholest>(mx-2*sx)&cholest<(mx+2*sx))/length(cholest))*100
par(mfrow=c(2,1))
hist(cholest)
hist(cholest, col=Altblue, breaks=10, ylim=c(0, 30),
    xlim=c(150, 400), main="Fancy Histogram")
arrows(mx-2*sx, 20, mx+2*sx, 20, lwd=2, code=3, length=.1)
text(mx, 24, expression(hat(mu) + - 2*hat(sigma)))
text(mx, 29, expression(bar(x) + - 2*sigma))
par(mfrow=c(1,1))
```
R Graphs

Histogram of cholest

Fancy Histogram

\[\bar{x} \pm 2s, \quad \hat{\mu} \pm 2\hat{\sigma} \]
Graphs and R Code

Histogram of cholest

Fancy Histogram

\[\bar{x} \pm 2s \]
\[\hat{\mu} \pm 2\sigma \]

R Code:

```r
attach(Framingham)
str(Framingham)
data.frame: 62 obs, 1 variable:
$ cholest: int 393 353 334 336 327 300 300 308 283 285 ...
Altblue <- "#CDCDED"
mx <- mean(cholest)
sx <- sd(cholest)
c(mx, sx)
[1] 250.03226 41.44321
c(mx-sx, mx+sx)
[1] 208.5890 291.4755
c(mx-2*sx, mx+2*sx)
[1] 167.1458 332.9187
(sum(cholest>(mx-1*sx) & cholest<(mx+1*sx))/length(cholest))
[1] 77.41935
(sum(cholest>(mx-2*sx) & cholest<(mx+2*sx))/length(cholest))
[1] 91.95846

par(mfrow=c(2,1))
hist(cholest)
hist(cholest, col=Altblue, breaks=10, ylim=c(0,30) + xlim=c(150,400), main="Fancy Histogram")
arrows(mx-2*sx, 20, mx+2*sx, 20, lwd=2, code=3, length=.1)
text(mx, 24, expression(hat(x) \pm \hat{\sigma}))
text(mx, 29, expression(hat(x) \pm \hat{\sigma} x))
par(mfrow=c(1,1))
```

```
How can you get R working for you and your students?
How can you get R working for you and your students?

The directions in what follows apply to R under Windows. For other operating systems, please follow the directions provided in the FAQ - (2.5 How can R be installed?)
How can you get R working for you and your students?

The directions in what follows apply to R under Windows. For other operating systems, please follow the directions provided in the FAQ - (2.5 How can R be installed?)

- Go to your nearest CRAN site to download R http://cran.r-project.org/mirrors.html.
- In the Precompiled Binary Distributions click on Windows (95 and later)
- Next click on base
- Download the current version of R by clicking on the file R-2.2.1-win32.exe. When the file download prompt appears, select save. Make sure you note where you save the download!
Installing R

- Navigate to the folder where the file R-2.2.1-win32.exe was saved.
- Double click on the file R-2.2.1-win32.exe and answer the Setup questions.
- Note: You may not have permission to install R on your Lab computers. However, you can always install R to a pen drive (provided your pen drive has at least 100 megs of free space - this may take 15-20 minutes) and subsequently run R from your pen drive. If you are installing R on a pen drive, make sure to specify the location where you would like R to be installed. For example, if your pen drive is in the F drive, you might specify F:/Program Files/R/R-2.2.1 as your install folder.
- Use the default values for your installation unless you know what you are doing.
Launching R

- You should have a shortcut R icon appear on the machine where you downloaded R provided you choose the default installation values. However, if you installed R to a pen drive on a University/Lab computer, the shortcut icon will more than likely disappear when the machine is shut down.
- To launch R, either click on the R shortcut icon on the desktop or navigate to the bin folder (Program Files/R/R-2.2.1/bin) and click on the Rgui.exe file.
R Console

Version 2.2.1  (2005-12-20 r36812)
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>
My class relies heavily on the BSDA package which needs to be both installed and loaded. To install BSDA,
My class relies heavily on the BSDA package which needs to be both installed and loaded. To install BSDA,

- Click on Packages > Install Package(s).
- Select an appropriate mirror.
- Select the packages you want to install (BSDA).
- Click on OK and BSDA and six additional packages required by BSDA will be downloaded and installed.
- To load BSDA, click on Packages > Load Package > BSDA.

Note: You only install a package once. However, to use the package, you must load it each time you launch R.
Using an Editor (Optional)

- Although you can type commands directly in the R console, the use of an editor is strongly recommended. There are several editors to choose from.
Using an Editor (Optional)

- Although you can type commands directly in the R console, the use of an editor is strongly recommended. There are several editors to choose from.
- Tinn-R is an excellent choice for students who will only use the editor to interact with R. The most recent stable version of Tinn-R can be found at [http://www.sciviews.org/Tinn-R/index.html](http://www.sciviews.org/Tinn-R/index.html).
Using an Editor (Optional)

- Although you can type commands directly in the R console, the use of an editor is **strongly** recommended. There are several editors to choose from.
- **Tinn-R** is an excellent choice for students who will only use the editor to interact with R. The most recent stable version of Tinn-R can be found at [http://www.sciviews.org/Tinn-R/index.html](http://www.sciviews.org/Tinn-R/index.html).
- If you have installed R on your pen drive, you will also want to install Tinn-R on your pen drive.
Using an Editor (Optional)

- Although you can type commands directly in the R console, the use of an editor is strongly recommended. There are several editors to choose from.
- Tinn-R is an excellent choice for students who will only use the editor to interact with R. The most recent stable version of Tinn-R can be found at http://www.sciviews.org/Tinn-R/index.html.
- If you have installed R on your pen drive, you will also want to install Tinn-R on your pen drive.
- To launch Tinn-R, click on Tinn-R.exe which is in the Tinn-R/bin folder provided the default options were selected while installing Tinn-R.
Using an Editor (Optional)

- Although you can type commands directly in the R console, the use of an editor is strongly recommended. There are several editors to choose from.
- Tinn-R is an excellent choice for students who will only use the editor to interact with R. The most recent stable version of Tinn-R can be found at http://www.sciviews.org/Tinn-R/index.html.
- If you have installed R on your pen drive, you will also want to install Tinn-R on your pen drive.
- To launch Tinn-R, click on Tinn-R.exe which is in the Tinn-R/bin folder provided the default options were selected while installing Tinn-R.
- To use Tinn-R, type your commands in the Tinn-R window as shown in the next slide. Select $R > \text{Send to R} > \text{All}$ to send all of the typed commands to R.
# Example Screen
junk <- rnorm(100,100,10)
par(mfrow=c(2,1))
hist(junk)
hist(junk, col="blue")
par(mfrow=c(1,1))
What is R?

Audience and Class

Course Objectives

R and Tinn-R

Installing R

Resources

**R Script and Graph**

R GUI

File History Resize Windows

R Graphics: Device 2 (ACTIVE)

**Histogram of junk**

Frequency

Junk

70 80 90 100 110 120

R Console

Version 2.2.1 (2005-12-20 r36812)

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO
You are welcome to redistribute it under certain
Type 'license()' or 'licence()' for distribution

Natural language support but running in an E

R is a collaborative project with many contri
Type 'contributors()' for more information and
'Test citation()' on how to cite R or R packages in

Type 'demo()' for some demos, 'help()' for on-
'help.start()' for an HTML browser interface to
Type 'q()' to quit R.

> # Example Screen
> junk <- rnorm(100,100,10)
> par(mfrow=c(2,1))
> hist(junk)
> hist(junk,col="blue")
> par(mfrow=c(1,1))
>
Resources for your Class

- **CRAN contributed Documentation** — Contributed materials not all in English.
• **CRAN contributed Documentation** — Contributed materials not all in English.

• Of particular interest to beginning students are the works “Using R for Data Analysis and Graphics — Introduction, Examples and Commentary” by John Maindonald and “Simple R” by John Verzani.
Resources for your Class

- **CRAN contributed Documentation** — Contributed materials not all in English.
- Of particular interest to beginning students are the works “Using R for Data Analysis and Graphics — Introduction, Examples and Commentary” by John Maindonald and “Simple R” by John Verzani.
- **Statistics and R** — A collection of slides and R scripts I have created.